Process Sheet Fixed Plate unit with cooling

This page shows a psychometric process for a typical 100% outdoor air energy recovery unit under standard design conditions. The numbers indicate different stages in the process where there is a transformation of the incoming air condition. The energy saving is compared to the energy needed to achieve the same supply conditions with a basic heating and/or cooling makeup air unit.

Process Calculation (per 1000 cfm)

Summer Operation

Plate effectiveness 65%

The fixed plate heat exchanger pre-conditions the air reaching the rooftop unit by cooling it. The air entering the cooling coil is at a closer temperature to the desired room air, thereby requiring less mechanical cooling . As a result the cooling coil can be downsized compared to a no-recovery process.

- ①-② pre-cool section Qt=4.5x1000x(41.4-37.4)= 18 mbh (1.5 tons)
- (2)-3 mechanical cooling Qt=4.5x1000x(37.4-23.2)=63.9 mbh (5.3 tons)

Winter Operation

Plate effectiveness 62 %

The fixed plate pre-conditions the air entering the rooftop unit heating coil by heating it. The air entering the heating coil is at a closer temperature to the desired room air, , thereby reducing the amount of mechanical heating needed. As a result the heating coil can be downsized compared to a no-recovery process.

1-2 pre-heat section Qs=1.08x1000x(45-10)=37.8 mbh

Savings gained by energy recovery			
cooling :	1.5 tons/1000 cfm	heating :	37.8 mbh/1000 cfm
Energy requ cooling: reheat:	ired without energy recovery 6.8 tons/1000 cfm 16.2 mbh	heating :	91.8 mbh/1000 cfm

